Dado un conjunto N tendente a infinito es inevitable que absolutamente todo suceda, siempre que se disponga de tiempo suficiente o infinito , y he ahí donde está el verdadero problema irresoluble o quid de la cuestión de la existencia ¿quién nos garantiza que dispongamos del tiempo necesario para que ocurra lo que debe o deseamos que suceda?


sábado, 8 de diciembre de 2012

Probabilidad empírica


La probabilidad empírica es la probabilidad estadística real de un sujeto o una opción, y mide las posibilidades reales e individuales, sobre la medición de la puntuación directa del sujeto, o  de una opción de la cual se ha medido la frecuencia de ocurrencia. En cualquier caso la probabilidad empírica será igual a la puntuación directa o frecuencia, de sujeto u opción, entre el sumatorio de todas las puntuaciones directas o frecuencias, de todos los sujetos u opciones.

La probabilidad empírica de sujeto u opción se representa "p(xi)", que viene a representar la probabilidad de "xi", siendo "xi" la representación simbólica de la puntuación directa o frecuencia de sujeto u opción, luego la probabilidad empírica será igual a la puntuación directa o frecuencia de sujeto u opción entre el sumatorio de las puntuaciones directas o frecuencias "Σxi".

probabilidad empírica = p(xi) = xi : Σxi

xi= puntuación directa o frecuencia
Σxi= sumatorio de puntuaciones directas o frecuencias
 


En el caso particular de la probabilidad empírica en una muestra de sujetos, de los cuales se ha estimado sus puntuaciones directas, la probabilidad empírica es la probabilidad estadística asociada a cada sujeto individual, y mide las verdaderas posibilidades reales individuales, en comparación al resto de sujetos de la muestra.
 
Supongamos una investigación en educación, donde los sujetos de estudio, la muestra,  son un grupo de alumnos,  después de una prueba de evaluación, un examen, cada alumno tiene una puntuación directa igual a la calificación obtenida, la probabilidad empírica de cada alumno será igual a su calificación entre la suma de todas las calificaciones.
 
Ya simplemente a partir de la probabilidad empírica de cada alumno, que mide su posibilidad real de éxito en la evaluación, tenemos una probabilidad estadística real sobre el tipo de comportamiento de cada alumno en la prueba. El valor de la probabilidad empírica será tanto descriptivo, nos permite una descripción fidedigna del grado de dominio y conocimiento del alumno sobre la asignatura, y también predictiva, ya simplemente a través de la probabilidad empírica se puede tener una estimación a priori, de dadas esas mismas circunstancias, un examen sobre la misma asignatura, cual es la probabilidad empírica de resultados del alumno en la prueba.
 
El Nivel de Sesgo de cada probabilidad empírica de cada sujeto de la muestra, el grupo de alumnos, será igual a la diferencia de la probabilidad empírica menos la probabilidad teórica, y los alumnos más aventajados que hayan obtenido mejores calificaciones tendrán sesgo positivo, mientras los alumnos con peores calificaciones tendrán sesgo negativo. Aquellos alumnos cuyos resultados se encuentren en torno a la media aritmética del grupo, la inversión de N, tendrán una probabilidad empírica tendente a cero, en la medida que su probabilidad empírica será próxima a probabilidad teórica.
 
Supongamos un estudio en un universo de sujetos donde los sujetos de estudio son los meses del año en donde se ha medido la temperatura media mensual, la puntuación directa de cada mes es igual a su temperatura media, y la probabilidad empírica de temperatura por mes el cociente de la temperatura mensual entre la suma de la temperatura de todos los meses, midiendo la posibilidad real de temperatura en cada mes.
 
La probabilidad empírica de temperatura de cada mes particular es la posibilidad real de temperatura mensual según esa medición, de forma que se tiene una estimación descriptiva del comportamiento de la temperatura  por meses. Un mes cuya probabilidad de temperatura sea baja significa que es un mes que ha tenido bajas temperaturas, ha hecho frío, y un mes donde la probabilidad de temperatura sea alta significa que es un mes donde ha habido mucha temperatura, ha sido caluroso, siendo entonces la probabilidad empírica un valor predictivo sobre la tendencia mensual de la temperatura en próximos años en función de los meses.
 
Una forma de poder baremar a partir de qué término medio un mes se puede decir que ha sido frío por cuanto su probabilidad empírica esté por debajo del término medio, o se pueda afirmar que un mes ha sido caluroso por cuanto su probabilidad empírica esté por encima del término medio, es mediante el Nivel de Sesgo, diferencia de probabilidad empírica menos probabilidad teórica, de forma que todos los meses que tengan sesgo positivo son calurosos, y todos los meses que tengan sesgo negativo son fríos, y los meses cuya probabilidad empírica se encuentren en torno a la probabilidad teórica meses de temperaturas templadas.
 
Los estudios de sujetos son estudios donde los sujetos de estudios son sujetos a una puntuación directa, siendo muestras de sujetos que forman parte de universos de sujetos, por ejemplo, un grupo de alumnos en una escuela forma parte del universo de todos los posibles alumnos escolarizados, y a los universos de sujetos en Introducción a Probabilidad Imposible se las llamará universos de sujetos u opciones infinitos, en tanto que los sujetos son tratados como si fuera opciones, e infinitos por cuanto son universos que, en función del tiempo  pueden llegar a ser infinitos, ya sea en un tiempo que no tenga ni principio ni fin, o tenga principio pero no tenga fin, o teniendo principio y fin existen infinitud de instantes entre los límites de tiempo, luego posibles infinitas mediciones, de la cual, cualquier medición, es una entre las posibles.
 
En los universos de sujetos la puntuación directa es igual al resultado de la medición de aquella cualidad singular objeto de estudio, que se mide a todos los sujetos de la muestra, siendo su probabilidad empírica igual a la puntuación directa de su cualidad particular entre el sumatorio de todas las puntuaciones directas.
 
La puntuación directa es la medición cuantitativa de la intensidad de una cualidad singular en cada sujeto en particular.
 
Además de los universos de sujetos, de los que se estiman sus puntuaciones directas, existen los universos de opciones, siendo una opción una alternativa posible ante una posible ocurrencia, en donde el concepto de alternativa implica que debe haber más de una alternativa simultáneamente en la que la ocurrencia puede resolverse, de forma que en una muestra de opciones, siendo cada opción una alternativa posible, habiendo más de una alternativa , la medición estadística determina el número total de ocurrencias por opción, que se llama frecuencia.
 
La frecuencia de una opción es el número total de ocurrencias en que esa opción se ha manifestado en la realidad, y la probabilidad empírica de la opción será igual a dividir su frecuencia particular entre el sumatorio de todas las frecuencias de todas las opciones, y mide las posibilidades reales de ocurrencia de esa opción en la muestra. En este sentido lo que la estadística tradicional llama frecuencia relativa, la frecuencia individual entre la total, es lo que en Introducción a la Probabilidad Imposible se llama probabilidad empírica de opción.
 
Supongamos que jugamos a lanzar una moneda al aire y queremos saber s la probabilidad de cara o cruz, la muestra de opciones es la muestra formada por las opciones cara o cruz, y la probabilidad empírica de cara igual al número de veces que ocurre cara entre el sumatorio de todos los lanzamientos de la moneda, siendo el número total de veces que se lanza la moneda igual a la suma de todas las ocurrencias de cara y todas las ocurrencias de cruz, y la probabilidad empírica de cruz igual al número de veces que ocurre cruz entre el número total de lanzamientos.
 
Al número de veces que ocurre cara se llama frecuencia de cara, y al número de veces que sale  la opción cruz se llama frecuencia de cruz, y la probabilidad empírica de cada opción será igual a su frecuencia particular entre el sumatorio de todas las frecuencias, y mide cuales son las posibilidades reales de que salga cada opción en particular.
 
Supongamos que queremos hacer un estudio de la probabilidad de hombres o mujeres en una población concreta, donde la muestra de opciones son dos, hombre o mujer, luego la probabilidad empírica de mujeres es igual a la cantidad total de mujeres en toda la población entre toda la población, y la probabilidad empírica de hombres la cantidad total de hombres entre toda la población.
 
Ya sea en el estudio de cara o cruz, hombre o mujer, si en condiciones normales, en ausencia de sesgo, lo más normal es que la probabilidad de cara o cruz sea la misma, o la probabilidad de mujer u hombre debiera ser la misma, lo que se observa es que no siempre tiene porque darse esta ausencia de sesgo, y en el caso de que la moneda este sesgada a favor de las caras o las cruces la probabilidad de cara o cruz será superior a la de cruz o cara, lo que significará que aquella opción que tenga mayor frecuencia en el Nivel de Sesgo tendrá sesgo positivo, lo cual se observa en los estudios demográficos, en donde por factores normalmente naturales, luego aleatorios, normalmente la probabilidad de mujeres es mayor a la de hombres, siendo un sesgo a favor de las mujeres producido naturalmente, es decir, un sesgo aleatorio del propio azar.
 
Supongamos que jugamos a lanzar un dado de seis caras, y apostamos que número saldrá de los seis, tenemos seis opciones, la probabilidad empírica de cada número asociado a cada cara del dado de seis caras será igual a la frecuencia en que sale cada número individualmente entre el número total de lanzamientos del dado, que es igual al sumatorio de todas las frecuencias obtenidas por todos los números de todas las caras.
 
En una democracia representativa se presentan una serie de partidos políticos, las opciones políticas, y antes de las elecciones se hace una encuesta de intención de voto, la frecuencia de voto por partido será igual a la cantidad de personas dispuestas a votar a ese partido, la probabilidad empírica de intención de voto a cada partido será igual a la frecuencia de votantes por partido entre todos los encuestados en la muestra. La probabilidad empírica de cada partido en la encuesta mediría cuales son las posibilidades reales de ganar de cada partido, aquellos partidos más cercanos a la Máxima Probabilidad Empírica Posible, la probabilidad empírica igual a uno, son los que tienen más posibilidades de ganar, debido a su sesgo positivo, probabilidad empírica superior a la teórica,  mientras aquellos que estén más próximos  a la Mínima Probabilidad Empírica Posible son los que  menos posibilidades tienen de ganar, luego tendrán asociado mayor sesgo negativo, probabilidad empírica inferior a la teórica.
 
La probabilidad empírica de una opción, sea al lanzar una moneda o un dado, sea la probabilidad empírica de hombres o mujeres, o la probabilidad empírica de ganar unas elecciones un partido político, es siempre la misma, frecuencia individual entre  la frecuencia total, el sumatorio de toda la frecuencia, y lo que mide la probabilidad empírica de una opción son las posibilidades reales de esa opción en comparación a las demás.
 
Los universos de opciones, a diferencia de los universos de sujetos que pueden tender a infinito, los universos de opciones son siempre universos limitados a las opciones predeterminadas a priori en la investigación, motivo por el cual los universos de opciones en Introducción a la Probabilidad Imposible se las llama universos de opciones limitadas.
 
En cualquier caso, sea un universo de sujetos a puntuación directa tras la medición de la intensidad de una cualidad particular, o sea un universo de opciones de frecuencia, en cualquier caso de forma universal, para todo sujeto u opción, en Introducción a la Probabilidad Imposible, se dirá que la probabilidad empírica de sujeto u opción es igual a puntuación directa o frecuencia entre el sumatorio de todas las puntuaciones directas o frecuencias.
 
Lo cual implica que la probabilidad empírica de sujeto es igual a su puntuación directa particular entre sumatorio de puntuaciones directas, y si lo que se estudia son opciones, la probabilidad empírica de una opción será igual a la frecuencia particular de la opción entre el sumatorio de todas las frecuencias.
 
La probabilidad empírica de sujeto u opción será siempre una probabilidad estadística real, por cuanto se deriva de una medición estadística, ya sea de puntuaciones directas o frecuencias, y mide en todo caso las posibilidades reales de ese sujeto u opción en la muestra, ya sea una muestra extraída de un universo de sujetos o un universo de opciones limitadas.
 
Las funciones de la probabilidad empírica son descriptiva y predictiva, en función de la probabilidad empírica de un sujeto u opción no sólo obtenemos una estimación descriptiva de ese sujeto u opción en la realidad presente o medida, tenemos un indicador a priori predictivo de dado su comportamiento actual cual puede ser su comportamiento futuro.
 
Si dado un grupo de alumnos, disponemos de las probabilidades empíricas después de una evaluación en una asignatura, ya disponemos de una estimación a priori para, si el alumno mantienen constante su comportamiento y no varía en el futuro, predecir su comportamiento según sus posibilidades reales actuales si estas no varían, la función de la probabilidad empírica no es sólo descriptiva, es predictiva, por cuanto los alumnos con mayores posibilidades, de mantenerse constantes las mismas condiciones, seguirán teniendo altas puntuaciones, y los alumnos con menores posibilidades seguirán teniendo menos puntuaciones, siempre que las condiciones de partida en la evaluación se mantengan constantes.
 
Evidentemente un buen profesor una vez hecha esta predicción de futuro sobre las posibilidades reales lo que intentará será en todo caso mejorar las condiciones de los alumnos con peores posibilidades, a fin que aumenten sus probabilidades, ahora bien, de no introducirse cambios, la probabilidad empírica es un buen estimador a priori.
 
De mantenerse constante la temperatura media mensual, la probabilidad de temperatura por mes es a priori una estimación de las posibilidades reales de temperatura mensual en los próximos años, salvo que el cambio climático altere significativamente el comportamiento de  las temperaturas mensuales.
 
Si en un estudio sobre la tasa estadística de la proporción de hombres y mujeres en la sociedad se demuestra que la probabilidad de mujeres es mayor a la de hombres, de mantenerse constantes estas condiciones, y no producirse variaciones significativas en la pirámide demográfica, lo que cabe estimar a priori, como predicción para siguientes años es que la tasa de mujeres seguirá siendo mayor que la de hombres. No es sólo un valor descriptivo, es predictivo.
 
Si en una encuesta de intención de voto a días antes de unas elecciones un partido político tiene la máxima probabilidad empírica, “p(xi+)”, otro partido tiene una probabilidad empírica próxima a probabilidad teórica “p(xi≈)”, y otro partido tiene la mínima probabilidad empírica, "p(xi-)", salvo que los partidos que no detentan la máxima hagan algo por invertir los resultados, lo más probable, a modo de predicción electoral, es que el partido que tiene la máxima en la encuesta en intención de voto sea el partido que gane las elecciones y obtenga la presidencia, mientras que el partido que tiene una probabilidad empírica próxima a teórica sacará unos resultados moderados, y el partido que tiene la mínima probabilidad empírica será aquel que tenga la menor representación electoral.
 
La probabilidad empírica tiene una función descriptiva por cuanto describe cuales son las posibilidades reales en el momento de la medición estadística, pero simultáneamente tiene una función predictiva por cuanto si las condiciones de la medición presente no varían y se mantienen constantes, lo más posible es que en el futuro las posibilidades reales de cada sujeto u opción son las que estima su probabilidad empírica.
 
La probabilidad empírica es una función estadística relativa o proporcional, en cuanto para que cualquier probabilidad empírica de sujeto u opción se mantenga constante, es imprescindible a priori que se mantengan constantes todas las probabilidades empíricas de todos los sujetos u opciones de la muestra. En el momento que varía la probabilidad empírica de un solo sujeto u opción entonces normalmente varían todas las probabilidades empíricas, por este motivo las relaciones entre las probabilidades empíricas son de carácter sistémico, baste que haya una variación un solo sujeto u opción para que todo cambie.
 
El modelo de probabilidad empírica es un modelo sistémico por cuanto un simple cambio en el comportamiento individual supone un cambio global en el comportamiento toda la muestra.
 
En el apartado 10 de Introducción a la Probabilidad Imposible se detallan los diferentes tipos de estudios intramedicionales inferenciales, y en el apartado 11 se detallan los diferentes modelos de crítica racional en función del objeto de estudio, utilizando probabilidades estadísticas, lo que viene a ser el Segundo Método de estadística de la probabilidad o probabilidad estadística. En el apartado 12 se exponen los modelos de crítica racional pero adaptados a las puntuaciones directas o frecuencias.
 
Dentro de los diferentes tipos de estudio en Probabilidad Imposible hay que diferenciar entre los estudios normales y los estudios omega. Dentro de los estudios normales diferenciar aquellos cuyo objeto de estudio es la igualdad de oportunidades: que las probabilidades empíricas tiendan a probabilidad teórica, inversión de N; estudios de sesgo positivo cuando si de toda N sólo hay un sujeto u opción ideal a elevar al máximo su probabilidad empírica, sea la máxima probabilidad empírica, en tendencia a Máxima Probabilidad Empírica Posible, la probabilidad empírica igual a uno; y los estudios de sesgo negativo donde el ideal es o bien la muestra de ceros, que todas las probabilidades empíricas sean igual a cero, porque miden cualidades negativas, por ejemplo, lo ideal es que la probabilidad empírica de todas las enfermedades sea cero, o la probabilidad empírica de todos los errores sea cero, o bien de sesgo negativo porque de toda N hay una serie de sujetos u opciones a reducir al mínimo su probabilidad empírica.
 
Los modelos omega en Introducción a la Probabilidad Imposible son aquellos en donde dada N hay un subconjunto de de sujetos u opciones ideales, siendo un subconjunto inferior a N pero igual o mayor de dos, siendo modelos que reciben un tratamiento diferente a los modelos normales. Mientras en los modelos normales la dispersión varía entre cero o máxima en los modelos omega lo ideal es una dispersión ideal.
 
En la medida que en función del objeto de estudio la manipulación de la variable independiente puede hacer variar las puntuaciones directas o frecuencias de la muestra, cualquier cambio, por mínimo que sea en un sujeto u opción individual produce automáticamente cambios en toda la distribución de probabilidades empíricas, debido a su carácter relativo y proporcional.
 
Si en un estudio, por el motivo que sea, un sujeto u opción determinado aumenta su puntuación directa, aunque todos los demás sujetos u opciones la mantengan constante, en cuanto un sujeto u opción determinado aumenta su puntuación directa o frecuencia entonces aumenta el sumatorio de las puntuaciones directas o frecuencias, luego únicamente aumentará la probabilidad empírica de ese sujeto u opción determinado, mientras que por el efecto de verse aumentado el sumatorio de las puntuaciones directas o frecuencias, aunque los demás sujetos u opciones mantengan constante su puntuación directa o frecuencia, por efecto del aumento del computo total del sumatorio de todas las puntuaciones directas o frecuencias, verán reducidas, los demás sujetos u opciones, sus probabilidades empíricas, porque el valor proporcional real, probabilidad empírica,  de una puntuación directa o frecuencia constante decrece conforme aumente el sumatorio de las puntuaciones directas o frecuencias.
 
Y viceversa, si en un estudio un sujeto u opción reduce su puntuación directa o frecuencia, se verá reducida su probabilidad empírica, mientras, aunque los demás sujetos u opciones mantuviesen constantes sus puntuaciones directas o frecuencias, sus probabilidades empíricas aumentarán porque el valor proporcional real, probabilidad empírica, de una puntuación directa o frecuencia constante aumentará conforme se reduzca el suma total de todas las puntuaciones directas o frecuencias.
 
La probabilidad empírica es un valor relativo y proporcional, en la medida que la probabilidad empírica de un sujeto u opción depende de dos tipos de variaciones, ya bien la variación directa individual sobre su puntuación directa o frecuencia, causa directa de aumento o disminución en la probabilidad empírica, o bien indirectamente por variaciones en el sumatorio de las puntuaciones directas o frecuencias, que con independencia que se mantenga constante una puntuación directa o frecuencia, es causa indirecta de aumento o disminución en la probabilidad empírica: a puntuación directa o frecuencia constante, conforme disminuya o aumente el sumatorio de puntuaciones directas o frecuencias, entonces mayor o menor probabilidad empírica.
 
Si N es la muestra de sujetos u opciones, N sujetos en universos de sujetos, N opciones en universos de opciones limitadas, al sumatorio de puntuaciones directas o frecuencias se llamará muestra de puntuaciones directas o frecuencias, siendo un factor de dispersión estadística. De esta forma todo estudio tendrá dos muestras diferenciadas : la muestra N de sujetos u opciones y la muestra de puntuaciones directas o frecuencias .En una muestra de N sujetos la muestra de puntuaciones directas es igual a la suma de todas las puntuaciones directas, y en una muestra de opciones la muestra de frecuencias será igual a la frecuencia total.
 
Precisamente a causa de que la dispersión puede estar motivada por diferentes factores, ya sea la manipulación experimental, la magnitud de N, y la magnitud de la muestra de puntuaciones directas o frecuencias, estos factores se estudian dentro de las relaciones entre dispersión empírica o teórica, dentro de la doble dimensión empírica o teórica de la realidad, que es en definitiva, el verdadero objeto de estudio.
 
En síntesis la probabilidad es el estudio de lo que sucede,  en función de lo cual se establecen proporciones o probabilidades estadísticas, sean empíricas, teóricas o críticas, siendo la probabilidad empírica la que se deriva de los datos reales de la muestra,  y estudia las posibilidades reales de los sujetos u opciones, para la descripción y predicción estadística.del comportamiento o la tendencia.

Rubén García Pedraza, Madrid a 21 de abril del 2013


http://probabilidadimposible.wordpress.com/
                                          La Librería Matemática de Probabilidad Imposible